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The chiral synthesis of the fully functionalized CD ring unit
of paclitaxel 3 is described; the three component coupling
reaction of a cyclohexenone derived from D-glucal by way of
Ferrier’s carbocyclization with vinyl cuprate and formal-
dehyde effectively constructed the carbon framework of 3.

Paclitaxel (Taxol®) 1 is a well-documented natural diterpenoid
and is known to show highly promising antitumor activity.1 The
challenging structure as well as important biological activities
of 1 has attracted much attention of the synthetic community,
and six successful total syntheses of 1 have been reported to

date.2 Our own synthetic endeavor to paclitaxel required the
fully functionalized CD ring unit 3 as the key intermediate; the
formyl function at C-3 (paclitaxel numbering) would be utilized
for the coupling reaction with a paclitaxel A-ring 2, and the
vinyl group at C-8 would serve as the key functionality for the
construction of a taxane skeleton. Successful precedents for
preparation of taxane tricarbocyclic structures by way of final
B-ring closure of connected AC ring systems revealed the
possibility of this approach.3 The highly oxygenated structure
of 3, which contains five contiguous chiral centers including a
quaternary carbon and a strained oxetane ring is synthetically
fascinating, and it is a significant aim to establish an effective
synthetic route to 3 from readily available material for the
development of a novel approach to the clinically important
compounds.4 In this communication, we report a synthesis of 3,
which utilized commercially available tri-O-acetyl-D-glucal 4
as a chiral starting material.

The known methyl glycoside 5,5† derived from 4 in a two
step reaction (90% overall yield) (Scheme 1) was converted into
primary iodide 6† in 87% yield, which was then treated with
NaH and benzyl bromide to afford enopyranoside 7† in 80%
yield. Ferrier’s carbocyclization6 of 7 using a catalytic amount
of Hg(OCOCF3)2,7 followed by b-elimination cleanly gen-
erated cyclohexenone 8 (80% yield). Reaction of 8 with MeLi
gave 1,2-adduct 9, whose oxidation with PCC afforded 10 in
83% yield from 8.

With a chiral cyclohexenone 10 in hand, generation of the
quaternary carbon at C-8 and the C–C bond at C-3 by a three
component coupling reaction8‡ of 10, a vinyl metal species, and
formaldehyde in a one-pot reaction was investigated. Treatment
of 10 with higher order vinylcuprate [(vinyl)2-

CuCNLi2] in Et2O at 278 °C caused the stereoselective
conjugated addition of the vinyl group to give an enolate
intermediate,§ which was then reacted with a THF solution of
formaldehyde at 260 °C to provide 11 {mp 50–52 °C; [a]D

23 +
12 (c 1.0, CHCl3)} and its C-3 isomer 12 {[a]D

23 + 93 (c 1.0,
CHCl3)} in 62 and 33% isolated yields, respectively. The
observed coupling constants and NOE unambiguously sup-
ported the structure of 11 (Scheme 2). Base-induced epimeriza-
tion of 12 gave an additional amount of 11 (44% yield, 12 was
recovered in 51% yield); thus 11 was obtained in 76% overall
yield from 10 after one-cycle epimerization of 12. Protection of
the hydroxy group in 11 as a THP ether afforded 14 in 90%
yield. To introduce an hydroxy function at C-5, ketone 14 was
treated with LiHMDS at 278 °C, and the resulting kinetic
enolate was trapped with TMSCl to provide silylenol ether,
which was then reacted with MCPBA at 220 °C followed by
treatment with TMSCl and triethylamine to give 15 and 16 in 53
and 26% isolated yields, respectively. Reaction of 15 with
Tebbe’s reagent9 and subsequent removal of the silyl protecting
group under basic conditions afforded exo-alkene 17 in 64%
yield.¶ Vanadium catalyzed epoxidation10 of 17 gave 18 as a
single isomer in 81% yield. Reaction of 18 with potassium
acetate in DMF, followed by treatment with acetic anhydride
and pyridine at rt gave 19 in 95% yield. The secondary hydroxy
group in 19 was mesylated to afford 20 (96% yield). Removal of
the O-acetyl group, followed by reaction with DBU4c in toluene
at 100 °C cleanly generated oxetane 21 in 65% yield.
Acetylation of tertiary alcohol in 21 afforded 22 (100%).
Deprotection of the O-THP group in 22 with CAN11∑ gave 23,
which was oxidized with TPAP12 to furnish the desired
aldehyde 3 {[a]D

23 2137 (c 0.07, CHCl3)} in 80% yield from
22. The observed NOE between the methyl at C-8 and the
formyl hydrogen, H-20, and H-6b, and between H-7 and H-3
clearly supported the assigned structure.
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Scheme 1 Bn = 2CH2Ph. Reagents and conditions: i, MeOH, BF3·OEt2,
PhH, 0 °C, then H2, 10% Pd-C, EtOAc, rt; ii, MeONa, MeOH, 0 °C, then I2,
Ph3P, imidazole, THF, rt; iii, NaH, DMF, 0 °C, then BnBr, n-Bu4NI, DMF,
0 °C; iv, Hg(OCOCF3)2 (5 mol%), acetone–H2O (2+1), 0 °C, then MsCl,
Et3N, CH2Cl2, 0 °C; v, MeLi, Et2O, 278 °C; vi, PCC, molecular sieves 4
Å (powder), CH2Cl2, rt.
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Notes and references
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next reaction without separation.
‡ A similar approach (starting from D-glucose) has been reported by
Ermolenko, see ref 4d.
§ Conjugated addition of the vinyl group to enone 10 was found to proceed
highly stereoselectively. When the intermediate enolate was treated with
aqueous NH4Cl, a 1,4-adduct was obtained as a single isomer in 95% yield.
Reduction of the 1,4-adduct with NaBH4 afforded a cyclohexanol derivative
13, which was acylated with (R)- and (S)-acetylmandelic acid (DCC,
DMAP) to give (R)- and (S)-acetylmandelate derivatives, respectively. 1H
NMR analyses of the acetylmandelates revealed that they showed quite
different spectra, and no signal due to the (R)-isomer was observed in the
spectrum of the (S)-isomer, indicating the cyclohexanol 13 possessed high
optical purity ( ~ 100% ee), and no racemization had occurred during the
preparation of 8 and 10 and the 1,4-addition process.
¶ When compound 16 was subjected to the same reaction conditions, no
reaction took place resulting in the recovery of 16.

∑ Under the conditions of deprotection of the O-THP group with PPTS in
EtOH, the primary hydroxy group in the resulting 23 further attacked the
oxetane ring to generate a significant amount of a THF derivative.
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Scheme 2 THP = tetrahydropyran-2-yl, TBS = 2SiMe2(t-Bu), Ms =
2SO2Me. Reagents and conditions: i, CuCN (2 eq.), vinyllithium (4 eq.),
Et2O, 278 °C, 10 min, then formaldyhyde in THF (1 mol l21, excess
amount), 260 °C, 15 min; ii, K2CO3, MeOH, rt; iii, 3,4-dihydro-2H-pyran,
PPTS, CH2Cl2, rt; iv, LiHDMS, THF, 278 °C, then TMSCl–Et3N (1+1,
v/v), 278 °C; v, MCPBA , 220 °C, CH2Cl2, then TMSCl, Et3N, CH2Cl2;
vi, Tebbe reagent, THF, rt, then K2CO3, MeOH, rt.; vii, t-BuOOH,
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xii, CAN (3 mol%), CH3CN–borate buffer (pH 8, 1+1), 50 °C; xiii, TPAP,
NMO, rt.
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